Construction and comparison of approximations for switching linear gaussian state space models

نویسندگان

  • David Barber
  • Bertrand Mesot
چکیده

We introduce a new method for approximate inference in Hybrid Dynamical Graphical models, in particular, for switching dynamical networks. For the important special case of switching linear Gaussian state space models (switching Kalman Filters), our method is a novel form of Gaussian sum smoother, consisting of a single forward and backward pass. Our method is particularly well suited to switching observation models, since one of the key approximations is obviated. We compare our method very favourably against a range of competing techniques, including sequential Monte Carlo and Expectation Propagation, for which we also derive a novel numerically more stable implementation using the ‘auxiliary variable trick’. We show that the use of mixture representations for both filtering and smoothing can dramatically improve the quality of the approximation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Stock Price in Energy Market Including Oil, Gas, and Coal: The Comparison of Linear and Non-Linear Two-State Markov Regime Switching Models

A common method to study the dynamic behavior of macroeconomic variables is using linear time series models; however, they are unable to explain nonlinear behavior of the series. Given the dependency between stock market and derivatives, the behavior of the underlying asset price can be modeled using Markov switching process properties and the economic regime significance. In this paper, a two-...

متن کامل

Modeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market

Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...

متن کامل

Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations

Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalised) linear models, (generalised) additive models, smoothing-spline models, state-space models, semiparametric regression, spatial and spatio-temporal models, log-Gaussian Cox-processes, and geostatistical models. In this paper we consider app...

متن کامل

Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations

Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider app...

متن کامل

Expectation Correction for an augmented class of Switching Linear Gaussian Models

We consider approximate inference in a class of switching linear Gaussian State Space models which includes the switching Kalman Filter and the more general case of switch transitions dependent on the continuous hidden state. The method is a novel form of Gaussian sum smoother consisting of a single forward and backward pass, and compares favourably against a range of competing techniques, incl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005